skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Wenqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 15, 2026
  2. The generation of synthetic tropical cyclone tracks for Risk assessment is a critical application of preparedness for the impacts of climate change and disaster relief, particularly in North America. Insurance companies use these synthetic tracks to estimate the potential risks and financial impacts of future tropical cyclones. For governments and policymakers, understanding the potential impacts of tropical cyclones helps in developing effective emergency response strategies, updating building codes, and prioritizing investments in resilience and mitigation projects. In this study, many hypothetical but plausible TC scenarios are created based on historical TC data HURDAT2 (HURricane DATa 2nd generation). A hybrid methodology, combining the ARIMA and K-MEANS methods with Autoencoder, is employed to capture better historical TC behaviors and project future trajectories and intensities. It demonstrates an efficient and reliable in the field of climate modeling and risk assessment. By effectively capturing past hurricane patterns and providing detailed future projections, this approach not only validates the reliability of this method but also offers crucial insights for a range of applications, from disaster preparedness and emergency management to insurance risk analysis and policy formulation. 
    more » « less
    Free, publicly-accessible full text available May 28, 2026
  3. Explaining deep learning models operating on time series data is crucial in various applications of interest which require interpretable and transparent insights from time series signals. In this work, we investigate this problem from an information theoretic perspective and show that most existing measures of explainability may suffer from trivial solutions and distributional shift issues. To address these issues, we introduce a simple yet practical objective function for time series explainable learning. The design of the objective function builds upon the principle of information bottleneck (IB), and modifies the IB objective function to avoid trivial solutions and distributional shift issues. We further present TimeX++, a novel explanation framework that leverages a parametric network to produce explanation-embedded instances that are both in-distributed and label-preserving. We evaluate TimeX++ on both synthetic and real-world datasets comparing its performance against leading baselines, and validate its practical efficacy through case studies in a real-world environmental application. Quantitative and qualitative evaluations show that TimeX++ outperforms baselines across all datasets, demonstrating a substantial improvement in explanation quality for time series data. 
    more » « less
  4. null (Ed.)